The body makes it seem so simple.

You take a bite of supper, and the black-box machinery of metabolism hums into life, transforming food into fuel and building materials. It’s the most primal biology: Every living thing must find energy, and must regulate its consumption.

But for an alarming and ever-increasing number of people, the machinery breaks down. The diagnosis? Diabetes.

Alan Attie; Banner photo above: This pancreatic islet contains healthy beta cells (stained red for insulin). It also contains a high number of cells producing glucagon (stained green), which raise the concentration of glucose in the bloodstream—indicating diabetes.

Alan Attie, a CALS professor of biochemistry, has been peering into the black box for two decades now, trying to identify the pathways in our bodies by which the disease is formed. “You can’t find a better excuse to study metabolic processes than diabetes,” he says. “It’s very, very rich.

Type 2 diabetes, caused by an inability to produce enough insulin to keep the body’s blood glucose at normal levels, is a global health crisis that has accelerated at a frightening speed over the last 20 years—roughly the same time Attie has been studying it.

It’s an enormously complex disease driven by both genetics and the environment. A DNA glitch here, an external variable there, and the body slides irretrievably out of balance. But only sometimes. Most people who develop type 2 diabetes are obese, yet most people who are obese don’t actually wind up diabetic.

Tracking this riddle has led Attie and his lab to several major discoveries, chief among them identifying two genes associated with diabetes: Sorcs1 and Tomosyn-2. Through years of elaborate experimentation, Attie and his team teased them from the genetic haystack and then relentlessly deciphered their role in metabolic malfunction.

Why do some mice become diabetic when they are obese—like the mouse on the left—and others not? This pair carries a mutation in determining genes, such as Tomosyn-2 and Sorcs1, which Attie’s lab identified.

Science has uncovered more than 140 genes that play a role in diabetes, yet genetic screening still has little value for patients. As with any part of a large and complicated puzzle, it’s hard to see precisely how Sorcs1 and Tomosyn-2 fit in until we have more pieces. The biology of diabetes is so complex that we can’t be certain what the discoveries may ultimately mean. But both genes have shed light on critical stages in metabolism and offer intriguing targets for potential drugs.

Attie need not look far to replenish his motivation. His own mother suffers from diabetes, and she used to quiz him weekly about when he would cure her. “The painful answer is that translation of basic research into cures takes a long time,” Attie once told the American Diabetes Association. “The most important clues that can lead to cures do not necessarily come from targeted research or research initially thought to be relevant to the disease.”

Continue reading this story in the Spring 2015 issue of Grow magazine

This entry was posted in Around CALS by Bookmark the permalink.